Dissipative Systems: Relative Roughness, Nonroughness of Various Degrees, and Integrability
نویسندگان
چکیده
This paper is devoted to the study of relative structural stability (the roughness) dynamical systems considered not on whole space systems, but only a certain subspace it. Moreover, deformations also does coincide with admissible deformations. In particular, we consider dissipative differential equations that arise in rigid-body dynamics and theory oscillations; dissipation such may by positive or negative. We examine roughness and, under conditions, their nonroughness various degrees. discuss problems integrability these finite combinations elementary functions.
منابع مشابه
RELATIVE INFORMATION FUNCTIONAL OF RELATIVE DYNAMICAL SYSTEMS
In this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. We extract the information function ofan ergodic dynamical system (X,T) from the relative information of T fromthe view point of observer χX, where X denotes the base space of the system.We also generalize the in...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملDarboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom
We consider natural complex Hamiltonian systems with n degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential V of degree k > 2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each k there exists an explicitly k...
متن کاملEstimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
We show that the long-time behavior of the projection of the exact solutions to the Navier-Stokes equations and other dissipative evolution equations on the finite-dimensional space of interpolant polynomials determines the long-time behavior of the solution itself provided that the spatial mesh is fine enough. We also provide an explicit estimate on the size of the mesh. Moreover, we show that...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2023
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-023-06465-3